Boundary regularity for manifold constrained p(x)‐harmonic maps
نویسندگان
چکیده
We prove partial and full boundary regularity for manifold constrained p ( x ) -harmonic maps.
منابع مشابه
Boundary Regularity and the Dirichlet Problem for Harmonic Maps
In a previous paper [10] we developed an interior regularity theory for energy minimizing harmonic maps into Riemannian manifolds. In the first two sections of this paper we prove boundary regularity for energy minimizing maps with prescribed Dirichlet boundary condition. We show that such maps are regular in a full neighborhood of the boundary, assuming appropriate regularity on the manifolds,...
متن کاملOptimal Regularity of Harmonic Maps from a Riemannian Manifold into a Static Lorentzian Manifold
positive function. In such a case, we write N = N0 ×β R. In this paper we consider the case where N0 is compact. We may assume, by Nash-Moser theorem, N0 is a submanifold of R for some k > 1. By the compactness of N0, there exist constants βmin, βmax > 0 such that βmin ≤ β(x) ≤ βmax for all x ∈ N0. Let M be a Riemannian manifold with non-empty boundary ∂M . For a map w = (u, t) : M → N0 ×β R, w...
متن کاملFixed Points of Commuting Holomorphic Maps without Boundary Regularity
We identify a class of domains of C in which any two commuting holomorphic self-maps have a common fixed point.
متن کاملManifold Constrained Variational Mixtures
In many data mining applications, the data manifold is of lower dimension than the dimension of the input space. In this paper, it is proposed to take advantage of this additional information in the frame of variational mixtures. The responsibilities computed in the VBE step are constrained according to a discrepancy measure between the Euclidean and the geodesic distance. The methodology is ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2021
ISSN: ['1469-7750', '0024-6107']
DOI: https://doi.org/10.1112/jlms.12499